CLOSED FORM OF THE STEERED ELONGATED HERMITE-GAUSS WAVELETS

Giuseppe Papari*, Patrizio Campisi, Nicolai Petkov

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

241 Downloads (Pure)

Samenvatting

We provide a closed form, both in the spatial and in the frequency domain, of a family of wavelets which arise from steering elongated Hermite-Gauss filters. These wavelets have interesting mathematical properties, as they form new dyadic families of eigenfunctions of the 2D Fourier transform, and generalize the well known Laguerre-Gauss harmonics. A special notation introduced here greatly simplifies our proof and unifies the cases of even and odd orders. Applying these wavelets to edge detection increases the performance of about 12.5% with respect to standard methods, in terms of the Pratt’s figure of merit, both for noisy and noise-free input images.
Originele taal-2English
Titel2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING
Plaats van productieNEW YORK
UitgeverijUniversity of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science
Pagina's377-380
Aantal pagina's4
ISBN van elektronische versie9781424479931
ISBN van geprinte versie9781424479924
StatusPublished - 2010
EvenementIEEE International Conference on Image Processing -
Duur: 26-sep-201029-sep-2010

Publicatie series

NaamIEEE International Conference on Image Processing ICIP
UitgeverijIEEE
ISSN van geprinte versie1522-4880

Other

OtherIEEE International Conference on Image Processing
Periode26/09/201029/09/2010

Citeer dit