Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils

Wenliang Ju, Lei Liu, Xiaolian Jin, Chengjiao Duan, Yongxing Cui, Jie Wang, Dengke Ma, Wei Zhao, Yunqiang Wang, Linchuan Fang*

*Corresponding author voor dit werk

    OnderzoeksoutputAcademicpeer review

    88 Citaten (Scopus)
    143 Downloads (Pure)

    Samenvatting

    Chelants application can increase the bioavailability of metals, subsequently limiting plant growth and reducing the efficiency of phytoremediation. Plant growth-promoting rhizobacteria (PGPRs) and rhizobium have substantial potential to improve plant growth and plant tolerance to metal stress. We evaluated the effects of co-inoculation with a PGPR strain (Paenibacillus mucilaginosus) and a Cu-resistant rhizobium strain (Sinorhizobium meliloti) on the efficiency of biodegradable chelant (S,S-ethylenediaminedisuccinic acid; EDDS) assisted phytoremediation of a Cu contaminated soil using alfalfa. The highest total Cu extraction by alfalfa was observed in the EDDS-treated soil upon co-inoculation with the PGPR and rhizobium strains, which was 1.2 times higher than that without co-inoculation. Partial least squares path modeling identified plant oxidative damage and soil microbial biomass as the key variables influencing Cu uptake by alfalfa roots. Co-inoculation significantly reduced the oxidative damage to alfalfa by mitigating the accumulation of malondialdehyde and reactive oxygen species, and improving the antioxidation capacity of the plant in the presence of EDDS. EDDS application decreased microbial diversity in the rhizosphere, whereas co-inoculation increased microbial biomass carbon and nitrogen, and microbial community diversity. Increased relative abundances of Actinobacteria and Bacillus and the presence of Firmicutes taxa as potential biomarkers demonstrated that co-inoculation increased soil nutrient content, and improved plant growth. Co-inoculation with PGPR and rhizobium can be useful for altering plant–soil biochemical responses during EDDS-enhanced phytoremediation to alleviate phytotoxicity of heavy metals and improve soil biochemical activities. This study provides an effective strategy for improving phytoremediation efficiency and soil quality during chelant assisted phytoremediation of metal-contaminated soils.

    Originele taal-2English
    Artikelnummer126724
    Aantal pagina's13
    TijdschriftChemosphere
    Volume254
    DOI's
    StatusPublished - sep.-2020

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit