TY - JOUR
T1 - Collagen cross-linking mediated by lysyl hydroxylase 2
T2 - an enzymatic battlefield to combat fibrosis
AU - Piersma, Bram
AU - Bank, Ruud A
N1 - © 2019 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
PY - 2019/9
Y1 - 2019/9
N2 - The hallmark of fibrosis is an excessive accumulation of collagen, ultimately leading to organ failure. It has become evident that the deposited collagen also exhibits qualitative modifications. A marked modification is the increased cross-linking, leading to a stabilization of the collagen network and limiting fibrosis reversibility. Not only the level of cross-linking is increased, but also the composition of cross-linking is altered: an increase is seen in hydroxyallysine-derived cross-links at the expense of allysine cross-links. This results in irreversible fibrosis, as collagen cross-linked by hydroxyallysine is more difficult to degrade. Hydroxyallysine is derived from a hydroxylysine in the telopeptides of collagen. The expression of lysyl hydroxylase (LH) 2 (LH2), the enzyme responsible for the formation of telopeptidyl hydroxylysine, is universally up-regulated in fibrosis. It is expected that inhibition of this enzyme will lead to reversible fibrosis without interfering with the normal repair process. In this review, we discuss the molecular basis of collagen modifications and cross-linking, with an emphasis on LH2-mediated hydroxyallysine cross-links, and their implications for the pathogenesis and treatment of fibrosis.
AB - The hallmark of fibrosis is an excessive accumulation of collagen, ultimately leading to organ failure. It has become evident that the deposited collagen also exhibits qualitative modifications. A marked modification is the increased cross-linking, leading to a stabilization of the collagen network and limiting fibrosis reversibility. Not only the level of cross-linking is increased, but also the composition of cross-linking is altered: an increase is seen in hydroxyallysine-derived cross-links at the expense of allysine cross-links. This results in irreversible fibrosis, as collagen cross-linked by hydroxyallysine is more difficult to degrade. Hydroxyallysine is derived from a hydroxylysine in the telopeptides of collagen. The expression of lysyl hydroxylase (LH) 2 (LH2), the enzyme responsible for the formation of telopeptidyl hydroxylysine, is universally up-regulated in fibrosis. It is expected that inhibition of this enzyme will lead to reversible fibrosis without interfering with the normal repair process. In this review, we discuss the molecular basis of collagen modifications and cross-linking, with an emphasis on LH2-mediated hydroxyallysine cross-links, and their implications for the pathogenesis and treatment of fibrosis.
U2 - 10.1042/EBC20180051
DO - 10.1042/EBC20180051
M3 - Review article
C2 - 31324706
SN - 0071-1365
VL - 63
SP - 377
EP - 387
JO - Essays in biochemistry
JF - Essays in biochemistry
IS - 3
ER -