Collective Bayesian Decision-Making in a Swarm of Miniaturized Robots for Surface Inspection

Thiemen Siemensma*, Darren Chiu, Sneha Ramshanker, Radhika Nagpal, Bahar Haghighat

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

Samenvatting

Robot swarms can effectively serve a variety of sensing and inspection applications. Certain inspection tasks require a binary classification decision. This work presents an experimental setup for a surface inspection task based on vibration sensing and studies a Bayesian two-outcome decision-making algorithm in a swarm of miniaturized wheeled robots. The robots are tasked with individually inspecting and collectively classifying a 1m×1m tiled surface consisting of vibrating and non-vibrating tiles based on the majority type of tiles. The robots sense vibrations using onboard IMUs and perform collision avoidance using a set of IR sensors. We develop a simulation and optimization framework leveraging the Webots robotic simulator and a Particle Swarm Optimization (PSO) method. We consider two existing information sharing strategies and propose a new one that allows the swarm to rapidly reach accurate classification decisions. We first find optimal parameters that allow efficient sampling in simulation and then evaluate our proposed strategy against the two existing ones using 100 randomized simulation and 10 real experiments. We find that our proposed method compels the swarm to make decisions at an accelerated rate, with an improvement of up to 20.52% in mean decision time at only 0.78% loss in accuracy.

Originele taal-2English
TitelSwarm Intelligence
Subtitel14th International Conference, ANTS 2024, Proceedings
RedacteurenHeiko Hamann, Andreagiovanni Reina, Jonas Kuckling, Eduard Buss, Marco Dorigo, Leslie Pérez Cáceres, Tanja Katharina Kaiser, Mohammad Soorati, Ken Hasselmann
UitgeverijSpringer
Pagina's57-70
Aantal pagina's14
ISBN van geprinte versie9783031709319
DOI's
StatusPublished - 2024
Evenement14th International Conference on Swarm Intelligence, ANTS 2024 - Konstanz, Germany
Duur: 9-okt.-202411-okt.-2024

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14987 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Conference

Conference14th International Conference on Swarm Intelligence, ANTS 2024
Land/RegioGermany
StadKonstanz
Periode09/10/202411/10/2024

Vingerafdruk

Duik in de onderzoeksthema's van 'Collective Bayesian Decision-Making in a Swarm of Miniaturized Robots for Surface Inspection'. Samen vormen ze een unieke vingerafdruk.

Citeer dit