Comparision of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods

Virginia Vadillo-Rodríguez, Henk J Busscher, Willem Norde, Joop de Vries, René JB Dijkstra, Ietse Stokroos, Henderina van der Mei

OnderzoeksoutputAcademicpeer review

109 Citaten (Scopus)

Samenvatting

Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanometer scale. For AFM, bacterial cells need to be firmly anchored to a substratum surface in order to withstand the friction forces from the silicon nitride tip. Different strategies for the immobilization of bacteria have been described in the literature. This paper compares AFM interaction forces obtained between Klebsiella terrigena and silicon nitride for three commonly used immobilization methods, i.e., mechanical trapping of bacteria in membrane filters, physical adsorption of negatively charged bacteria to a positively charged surface, and glutaraldehyde fixation of bacteria to the tip of the microscope. We have shown that different sample preparation techniques give rise to dissimilar interaction forces. Indeed, the physical adsorption of bacterial cells on modified substrata may promote structural rearrangements in bacterial cell surface structures, while glutaraldehyde treatment was shown to induce physicochemical and mechanical changes on bacterial cell surface properties. In general, mechanical trapping of single bacterial cells in filters appears to be the most reliable method for immobilization.

Originele taal-2English
Pagina's (van-tot)5441-5446
Aantal pagina's6
TijdschriftApplied and environmental microbiology
Volume70
Nummer van het tijdschrift9
DOI's
StatusPublished - sep.-2004

Vingerafdruk

Duik in de onderzoeksthema's van 'Comparision of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods'. Samen vormen ze een unieke vingerafdruk.

Citeer dit