Completeness via correspondence for extensions of the logic of paradox

Barteld Kooi*, Allard Tamminga

*Corresponding author voor dit werk

Onderzoeksoutput: ArticleAcademicpeer review

29 Citaten (Scopus)
434 Downloads (Pure)

Samenvatting

Taking our inspiration from modal correspondence theory, we present the idea of correspondence analysis for many-valued logics. As a benchmark case, we study truth-functional extensions of the Logic of Paradox (LP). First, we characterize each of the possible truth table entries for unary and binary operators that could be added to LP by an inference scheme. Second, we define a class of natural deduction systems on the basis of these characterizing inference schemes and a natural deduction system for LP. Third, we show that each of the resulting natural deduction systems is sound and complete with respect to its particular semantics.

Originele taal-2English
Pagina's (van-tot)720 - 730
Aantal pagina's11
TijdschriftThe Review of Symbolic Logic
Volume5
Nummer van het tijdschrift4
DOI's
StatusPublished - dec.-2012

Vingerafdruk

Duik in de onderzoeksthema's van 'Completeness via correspondence for extensions of the logic of paradox'. Samen vormen ze een unieke vingerafdruk.

Citeer dit