Concurrent computation of connected pattern spectra for very large image information mining

Michael Wilkinson, Ugo Moschini, G.K. Ouzounis, M. Pesaresi

OnderzoeksoutputAcademicpeer review

Samenvatting

This paper presents a shared-memory parallel algorithm for computing connected
pattern spectra from the Max-Tree structure. The pattern
spectrum is an aggregated feature space derived directly from the
tree-based image representation and is a powerful tool for
interactive image information mining. An application example along
with timings on experiments with Gpixel input imagery are given. On
images of 0.87 to 1.29 Gpixel, wall-clock times of 8.13 to 15.17s, and
a speed up of between 27.5 and 33.5 were achieved on a single 2U
64 core rack server.
Originele taal-2English
TitelESA-EUSC-JRC 8th Conference on Image Information Mining
Pagina's21-25
Aantal pagina's5
DOI's
StatusPublished - 2012
EvenementESA-EUSC-JRC 8th Conference on Image Information Mining - German Aerospace Centre (DLR) , Oberpfaffenhofen, Germany
Duur: 24-okt.-201226-okt.-2012

Conference

ConferenceESA-EUSC-JRC 8th Conference on Image Information Mining
Land/RegioGermany
StadOberpfaffenhofen
Periode24/10/201226/10/2012

Vingerafdruk

Duik in de onderzoeksthema's van 'Concurrent computation of connected pattern spectra for very large image information mining'. Samen vormen ze een unieke vingerafdruk.

Citeer dit