Contact variational integrators

Mats Vermeeren, Alessandro Bravetti, Marcello Seri*

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

31 Citaten (Scopus)
157 Downloads (Pure)

Samenvatting

We present geometric numerical integrators for contact flows that stem from a discretization of Herglotz' variational principle. First we show that the resulting discrete map is a contact transformation and that any contact map can be derived from a variational principle. Then we discuss the backward error analysis of our variational integrators, including the construction of a modified Lagrangian. Surprisingly, this construction presents some interesting simplifications compared to the corresponding construction for symplectic systems. Throughout the paper we use the damped harmonic oscillator as a benchmark example to compare our integrators to their symplectic analogues.
Originele taal-2English
Artikelnummer445206
Aantal pagina's27
TijdschriftJournal of Physics A: Mathematical and Theoretical
Volume55
Nummer van het tijdschrift44
DOI's
StatusPublished - 10-okt.-2019

Vingerafdruk

Duik in de onderzoeksthema's van 'Contact variational integrators'. Samen vormen ze een unieke vingerafdruk.

Citeer dit