Convex approximations for two-stage mixed-integer mean-risk recourse models with conditional value-at-risk

E. Ruben van Beesten, Ward Romeijnders*

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

1 Citaat (Scopus)
40 Downloads (Pure)


In traditional two-stage mixed-integer recourse models, the expected value of the total costs is minimized. In order to address risk-averse attitudes of decision makers, we consider a weighted mean-risk objective instead. Conditional value-at-risk is used as our risk measure. Integrality conditions on decision variables make the model non-convex and hence, hard to solve. To tackle this problem, we derive convex approximation models and corresponding error bounds, that depend on the total variations of the density functions of the random right-hand side variables in the model. We show that the error bounds converge to zero if these total variations go to zero. In addition, for the special cases of totally unimodular and simple integer recourse models we derive sharper error bounds.

Originele taal-2English
Pagina's (van-tot)473-507
Aantal pagina's35
TijdschriftMathematical Programming
Nummer van het tijdschrift2
StatusPublished - jun-2020

Citeer dit