Correction for the shrinkage effect in Gaussian graphical models

OnderzoeksoutputAcademic

Samenvatting

Gaussian graphical models (GGMs) are probabilistic graphical models
based on partial correlation. A GGM consists of a network of nodes (representing
the random variables) connected by edges (their partial correlation). To infer a
GGM, the inverse of the covariance matrix (the precision matrix) is required. The
main challenge is that when the number of variables is larger than the sample size,
the (sample) covariance is ill conditioned (or not invertible). Shrinkage methods
consist in regularizing the estimator of the covariance matrix to make it invertible
(and well conditioned); however, the effect of the shrinkage on the final network
topology has not been studied so far.
Originele taal-2English
Pagina's281-284
Aantal pagina's4
StatusPublished - 24-jul.-2020
Evenement35th International Workshop
on Statistical Modelling
- Bilbao, Spain
Duur: 20-jul.-202024-jul.-2020
Congresnummer: 35
https://wp.bcamath.org/iwsm2020/

Conference

Conference35th International Workshop
on Statistical Modelling
Verkorte titelIWSM 2020
Land/RegioSpain
StadBilbao
Periode20/07/202024/07/2020
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Correction for the shrinkage effect in Gaussian graphical models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit