Cotangent bundle reduction and Poincaré–Birkhoff normal forms

Ünver Çiftçi, Holger Waalkens, Henk W. Broer

    OnderzoeksoutputAcademic

    3 Citaten (Scopus)
    442 Downloads (Pure)

    Samenvatting

    In this paper we study a systematic and natural construction of canonical coordinates for the reduced space of a cotangent bundle with a free Lie group action. The canonical coordinates enable us to compute Poincaré–Birkhoff normal forms of relative equilibria using standard algorithms. The case of simple mechanical systems with symmetries is studied in detail. As examples we compute Poincaré–Birkhoff normal forms for a Lagrangian equilateral triangle configuration of a three-body system with a Morse-type potential and the stretched-out configuration of a double spherical pendulum.
    Originele taal-2English
    Pagina's (van-tot)1-13
    Aantal pagina's13
    TijdschriftPhysica D: Nonlinear Phenomena
    Volume268
    StatusPublished - 2014

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Cotangent bundle reduction and Poincaré–Birkhoff normal forms'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit