Critical points of the integral map of the charged 3-body problem

I. Hoveijn*, H. Waalkens, M. Zaman

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

2 Citaten (Scopus)
107 Downloads (Pure)

Samenvatting

This is the first in a series of three papers where we study the integral manifolds of the charged three-body problem. The integral manifolds are the fibers of the map of integrals. Their topological type may change at critical values of the map of integrals. Due to the non-compactness of the integral manifolds one has to take into account besides `ordinary' critical points also critical points at infinity. In the present paper we concentrate on `ordinary' critical points and in particular elucidate their connection to central configurations. In a second paper we will study critical points at infinity. The implications for the Hill regions, i.e. the projections of the integral manifolds to configuration space, are the subject of a third paper.
Originele taal-2English
Pagina's (van-tot)165-196
Aantal pagina's32
TijdschriftIndagationes Mathematicae
Volume30
Nummer van het tijdschrift1
Vroegere onlinedatum1-okt.-2018
DOI's
StatusPublished - jan.-2019

Vingerafdruk

Duik in de onderzoeksthema's van 'Critical points of the integral map of the charged 3-body problem'. Samen vormen ze een unieke vingerafdruk.

Citeer dit