DASS Good: Explainable Data Mining of Spatial Cohort Data

A. Wentzel, C. Floricel, G. Canahuate, M.A. Naser, A. S. Mohamed, CD. Fuller, L. van Dijk, G.E. Marai

    OnderzoeksoutputAcademicpeer review

    6 Citaten (Scopus)
    52 Downloads (Pure)

    Samenvatting

    Developing applicable clinical machine learning models is a difficult task when the data includes spatial information, for example, radiation dose distributions across adjacent organs at risk. We describe the co-design of a modeling system, DASS, to support the hybrid human-machine development and validation of predictive models for estimating long-term toxicities related to radiotherapy doses in head and neck cancer patients. Developed in collaboration with domain experts in oncology and data mining, DASS incorporates human-in-the-loop visual steering, spatial data, and explainable AI to augment domain knowledge with automatic data mining. We demonstrate DASS with the development of two practical clinical stratification models and report feedback from domain experts. Finally, we describe the design lessons learned from this collaborative experience.
    Originele taal-2English
    Pagina's (van-tot)283-295
    Aantal pagina's13
    TijdschriftComputer Graphics Forum
    Volume42
    Nummer van het tijdschrift3
    DOI's
    StatusPublished - jun.-2023

    Vingerafdruk

    Duik in de onderzoeksthema's van 'DASS Good: Explainable Data Mining of Spatial Cohort Data'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit