Data-efficient representation learning for visual place recognition

María Leyva Vallina

Onderzoeksoutput

581 Downloads (Pure)

Samenvatting

This thesis investigates the problem of visual place recognition, which is a fundamental part of many visual-based localization systems, and therefore of high value to the computer vision community. In particular, we address two problems in the field: the first half of this dissertation is devoted to the presentation and evaluation of a novel dataset in a very under-explored type of environment, namely garden environments. The second half of this thesis addresses the algorithmic part of visual place recognition and proposes a shift of paradigm to learn visual descriptors that encode stronger, reliable, and quantifiable representations of image similarity.
Originele taal-2English
KwalificatieDoctor of Philosophy
Toekennende instantie
  • Rijksuniversiteit Groningen
Begeleider(s)/adviseur
  • Petkov, Nicolai, Supervisor
  • Wilkinson, Michael, Supervisor
  • Strisciuglio, Nicola, Co-supervisor
Datum van toekenning31-okt.-2023
Plaats van publicatie[Groningen]
Uitgever
DOI's
StatusPublished - 2023

Vingerafdruk

Duik in de onderzoeksthema's van 'Data-efficient representation learning for visual place recognition'. Samen vormen ze een unieke vingerafdruk.

Citeer dit