Decimations for one- and two-dimensional Ising and rotator models. II. Continuous vs discrete symmetries

Matteo D'Achille, Aernout C.D. Van Enter, Arnaud Le Ny

OnderzoeksoutputAcademicpeer review

74 Downloads (Pure)

Samenvatting

We show how decimated Gibbs measures having unbroken continuous symmetry due to the Mermin-Wagner theorem, despite their discrete equivalents exhibiting phase transition, can still become non-Gibbsian. The mechanism rests on the occurrence of a spin-flop transition with a broken discrete symmetry, once the model is constrained by the decimated spins in a suitably chosen "bad"configuration.

Originele taal-2English
Artikelnummer123506
Aantal pagina's14
TijdschriftJournal of Mathematical Physics
Volume63
Nummer van het tijdschrift12
DOI's
StatusPublished - dec.-2022

Vingerafdruk

Duik in de onderzoeksthema's van 'Decimations for one- and two-dimensional Ising and rotator models. II. Continuous vs discrete symmetries'. Samen vormen ze een unieke vingerafdruk.

Citeer dit