Deep Learning and Radiomics Based PET/CT Image Feature Extraction from Auto Segmented Tumor Volumes for Recurrence-Free Survival Prediction in Oropharyngeal Cancer Patients

OnderzoeksoutputAcademicpeer review

2 Citaten (Scopus)
102 Downloads (Pure)

Samenvatting

Aim: The development and evaluation of deep learning (DL) and radiomics based models for recurrence-free survival (RFS) prediction in oropharyngeal squamous cell carcinoma (OPSCC) patients based on clinical features, positron emission tomography (PET) and computed tomography (CT) scans and GTV (Gross Tumor Volume) contours of primary tumors and pathological lymph nodes. Methods: A DL auto-segmentation algorithm generated the GTV contours (task 1) that were used for imaging biomarkers (IBMs) extraction and as input for the DL model. Multivariable cox regression analysis was used to develop radiomics models based on clinical and IBMs features. Clinical features with a significant correlation with the endpoint in a univariable analysis were selected. The most promising IBMs were selected by forward selection in 1000 times bootstrap resampling in five-fold cross validation. To optimize the DL models, different combinations of clinical features, PET/CT imaging, GTV contours, the selected radiomics features and the radiomics model predictions were used as input. The combination with the best average performance in five-fold cross validation was taken as the final input for the DL model. The final prediction in the test set, was an ensemble average of the predictions from the five models for the different folds. Results: The average C-index in the five-fold cross validation of the radiomics model and the DL model were 0.7069 and 0.7575, respectively. The radiomics and final DL models showed C-indexes of 0.6683 and 0.6455, respectively in the test set. Conclusion: The radiomics model for recurrence free survival prediction based on clinical, GTV and CT image features showed the best predictive performance in the test set with a C-index of 0.6683.

Originele taal-2English
TitelHead and Neck Tumor Segmentation and Outcome Prediction - 3rd Challenge, HECKTOR 2022, Held in Conjunction with MICCAI 2022, Proceedings
RedacteurenVincent Andrearczyk, Valentin Oreiller, Adrien Depeursinge, Mathieu Hatt
UitgeverijSpringer Science and Business Media Deutschland GmbH
Pagina's240-254
Aantal pagina's15
ISBN van geprinte versie9783031274190
DOI's
StatusPublished - 18-mrt.-2023
Evenement3rd 3D Head and Neck Tumor Segmentation in PET/CT Challenge, HECKTOR 2022, held in Conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2022 - Singapore, Singapore
Duur: 22-sep.-202222-sep.-2022

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13626 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Conference

Conference3rd 3D Head and Neck Tumor Segmentation in PET/CT Challenge, HECKTOR 2022, held in Conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2022
Land/RegioSingapore
StadSingapore
Periode22/09/202222/09/2022

Vingerafdruk

Duik in de onderzoeksthema's van 'Deep Learning and Radiomics Based PET/CT Image Feature Extraction from Auto Segmented Tumor Volumes for Recurrence-Free Survival Prediction in Oropharyngeal Cancer Patients'. Samen vormen ze een unieke vingerafdruk.

Citeer dit