Samenvatting
The mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of physiological adaptations in response to changes in nutrient supply. Major downstream targets of mTORC1 signalling are the mRNA translation regulators p70 ribosomal protein S6 kinase 1 (S6K1p70) and the 4E-binding proteins (4E-BPs). However, little is known about vertebrate mRNAs that are specifically controlled by mTORC1 signalling and are engaged in regulating mTORC1-associated physiology. Here, we show that translation of the CCAAT/enhancer binding protein beta (C/EBP beta) mRNA into the C/EBP beta-LIP isoform is suppressed in response to mTORC1 inhibition either through pharmacological treatment or through calorie restriction. Our data indicate that the function of 4E-BPs is required for suppression of LIP. Intriguingly, mice lacking the cis-regulatory upstream open reading frame (uORF) in the C/EBP beta-mRNA, which is required for mTORC1-stimulated translation into C/EBP beta-LIP, display an improved metabolic phenotype with features also found under calorie restriction. Thus, our data suggest that translational adjustment of C/EBP beta-isoform expression is one of the key processes that direct metabolic adaptation in response to changes in mTORC1 activity.
Originele taal-2 | English |
---|---|
Pagina's (van-tot) | 1022-1036 |
Aantal pagina's | 15 |
Tijdschrift | Embo Reports |
Volume | 16 |
Nummer van het tijdschrift | 8 |
DOI's | |
Status | Published - aug.-2015 |