TY - CONF
T1 - Device-based image matching with similarity learning by convolutional neural networks that exploit the underlying camera sensor pattern noise
AU - Bennabhaktula, Swaroop
AU - Alegre, Enrique
AU - Karastoyanova, Dimka
AU - Azzopardi, George
PY - 2020
Y1 - 2020
N2 - One of the challenging problems in digital image forensics is the capability to identify images that are captured by the same camera device. This knowledge can help forensic experts in gathering intelligence about suspects by analyzing digital images. In this paper, we propose a two-part network to quantify the likelihood that a given pair of images have the same source camera, and we evaluated it on the benchmark Dresden data set containing 1851 images from 31 different cameras. To the best of our knowledge, we are the first ones addressing the challenge of device-based image matching. Though the proposed approach is not yet forensics ready, our experiments show that this direction is worth pursuing, achieving at this moment 85 percent accuracy. This ongoing work is part of the EU-funded project 4NSEEK concerned with forensics against child sexual abuse.
AB - One of the challenging problems in digital image forensics is the capability to identify images that are captured by the same camera device. This knowledge can help forensic experts in gathering intelligence about suspects by analyzing digital images. In this paper, we propose a two-part network to quantify the likelihood that a given pair of images have the same source camera, and we evaluated it on the benchmark Dresden data set containing 1851 images from 31 different cameras. To the best of our knowledge, we are the first ones addressing the challenge of device-based image matching. Though the proposed approach is not yet forensics ready, our experiments show that this direction is worth pursuing, achieving at this moment 85 percent accuracy. This ongoing work is part of the EU-funded project 4NSEEK concerned with forensics against child sexual abuse.
KW - Source Camera Identification
KW - Image Forensics
KW - Sensor Pattern Noise
U2 - 10.5220/0009155505780584
DO - 10.5220/0009155505780584
M3 - Paper
SP - 578
EP - 584
ER -