Diagonal complexes for surfaces of finite type and surfaces with involution

Gaiane Panina, Iosif Gordon

Onderzoeksoutput: ArticleAcademicpeer review

Samenvatting

Two constructions are studied that are inspired by the ideas of a recent paper by the authors.
— The diagonal complex D
and its barycentric subdivision BD
related to an oriented surface of finite type F
equipped with a number of labeled marked points. This time, unlike the paper mentioned above, boundary components without marked points are allowed, called holes.
— The symmetric diagonal complex Dinv
and its barycentric subdivision BDinv
related to a symmetric (=with an involution) oriented surface F
equipped with a number of (symmetrically placed) labeled marked points.
The symmetric complex is shown to be homotopy equivalent to the complex of a surface obtained by “taking a half” of the initial symmetric surface.
Originele taal-2English
Pagina's (van-tot)51-72
Aantal pagina's22
TijdschriftАлгебра и анализ
Volume33
Nummer van het tijdschrift3
StatusPublished - 2021
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'Diagonal complexes for surfaces of finite type and surfaces with involution'. Samen vormen ze een unieke vingerafdruk.

Citeer dit