DISCLOSE: DISsection of CLusters Obtained by SEries of transcriptome data using functional annotations and putative transcription factor binding sites

Evert-Jan Blom, Sacha A.F.T. van Hijum, Klaas J. Hofstede, Remko Silvis, Jos B.T.M. Roerdink, Oscar P. Kuipers*

*Corresponding author voor dit werk

Onderzoeksoutput: ArticleAcademicpeer review

5 Citaten (Scopus)
498 Downloads (Pure)

Samenvatting

Background: A typical step in the analysis of gene expression data is the determination of clusters of genes that exhibit similar expression patterns. Researchers are confronted with the seemingly arbitrary choice between numerous algorithms to perform cluster analysis.

Results: We developed an exploratory application that benchmarks the results of clustering methods using functional annotations. In addition, a de novo DNA motif discovery algorithm is integrated in our program which identifies overrepresented DNA binding sites in the upstream DNA sequences of genes from the clusters that are indicative of sites of transcriptional control. The performance of our program was evaluated by comparing the original results of a time course experiment with the findings of our application.

Conclusion: DISCLOSE assists researchers in the prokaryotic research community in systematically evaluating results of the application of a range of clustering algorithms to transcriptome data. Different performance measures allow to quickly and comprehensively determine the best suited clustering approach for a given dataset.

Originele taal-2English
Artikelnummer535
Aantal pagina's11
TijdschriftBmc Bioinformatics
Volume9
Nummer van het tijdschrift1
DOI's
StatusPublished - 16-dec.-2008

Vingerafdruk

Duik in de onderzoeksthema's van 'DISCLOSE: DISsection of CLusters Obtained by SEries of transcriptome data using functional annotations and putative transcription factor binding sites'. Samen vormen ze een unieke vingerafdruk.

Citeer dit