Discovering Cognitive Stages in M/EEG Data to Inform Cognitive Models

Jelmer P. Borst*, John R. Anderson

*Corresponding author voor dit werk

Onderzoeksoutput: ChapterAcademicpeer review

3 Citaten (Scopus)
20 Downloads (Pure)

Samenvatting

Computational cognitive models aim to simulate the cognitive processes humans go through when performing a particular task. In this chapter, we discuss a machine learning approach that can discover such cognitive processes in M/EEG data. The method uses a combination of multivariate pattern analysis (MVPA) and hidden semi-Markov models (HsMMs), to take both the spatial extent and the temporal duration of cognitive processes into account. In the first part of this chapter, we will introduce the HsMM-MVPA method and demonstrate its application to an associative recognition dataset. Next, we will use the results of the analysis to inform a high-level cognitive model developed in the ACT-R (adaptive control of thought – rational) architecture. Finally, we will discuss how the HsMM-MVPA method can be extended and how it can inform other modeling paradigms.

Originele taal-2English
TitelAn Introduction to Model-Based Cognitive Neuroscience
RedacteurenBirte U. Forstmann, Brandon M. Turner
UitgeverijSpringer International Publishing AG
Pagina's101-117
Aantal pagina's17
Uitgave2
ISBN van elektronische versie9783031452710
ISBN van geprinte versie9783031452703
DOI's
StatusPublished - 31-mrt.-2024

Vingerafdruk

Duik in de onderzoeksthema's van 'Discovering Cognitive Stages in M/EEG Data to Inform Cognitive Models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit