Distributed Component Forests: ImagesHierarchical Image Representations Suitable for Tera-Scale

M.H.F. Wilkinson, Simon Gazagnes

OnderzoeksoutputAcademicpeer review

97 Downloads (Pure)

Samenvatting

The standard representations know as component trees, used in morphological connected attribute filtering and multi-scale analysis, are unsuitable for cases in which either the image itself, or the tree do not fit in the memory of a single compute node. Recently, a new structure has been developed which consists of a collection of modified component trees, one for each image tile. It has to date only been applied to fairly simple image filtering based on area. In this paper we explore other applications of these distributed component forests, in particular to multi-scale analysis such as pattern spectra, and morphological attribute profiles and multi-scale leveling segmentations
Originele taal-2English
TitelProceedings of the International Conference on Pattern Recognition and Artificial Intelligence
RedacteurenChing Y. Suen
Plaats van productieMontreal, Canada
UitgeverijCENPARMI, Centre for Pattern Recognition and Machine Intellig ence Concordia University, Montreal, Canada
Pagina's96-101
ISBN van elektronische versie978-1-895193-04-6
StatusPublished - 2018
EvenementInternational Conference on Pattern Recognition and Artificial Intelligence ICPRAI 2018 - Montreal, Quebec, Canada
Duur: 14-mei-201817-mei-2018

Conference

ConferenceInternational Conference on Pattern Recognition and Artificial Intelligence ICPRAI 2018
Land/RegioCanada
StadMontreal, Quebec
Periode14/05/201817/05/2018

Vingerafdruk

Duik in de onderzoeksthema's van 'Distributed Component Forests: ImagesHierarchical Image Representations Suitable for Tera-Scale'. Samen vormen ze een unieke vingerafdruk.

Citeer dit