Dual Adjunction Between Ω-Automata and Wilke Algebra Quotients

Anton Chernev*, Helle Hvid Hansen, Clemens Kupke

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

10 Downloads (Pure)

Samenvatting

Ω-automata and Wilke algebras are formalisms for characterising ω-regular languages via their ultimately periodic words. Ω-automata read finite representations of ultimately periodic words, called lassos, and they are a subclass of lasso automata. We introduce lasso semigroups as a generalisation of Wilke algebras that mirrors how lasso automata generalise Ω-automata, and we show that finite lasso semigroups characterise regular lasso languages. We then show a dual adjunction between lasso automata and quotients of the free lasso semigroup with a recognising set, and as our main result we show that this dual adjunction restricts to one between Ω-automata and quotients of the free Wilke algebra with a recognising set.

Originele taal-2English
TitelTheoretical Aspects of Computing – ICTAC 2024 - 21st International Colloquium, Proceedings
RedacteurenChutiporn Anutariya, Marcello M. Bonsangue
UitgeverijSpringer Science and Business Media Deutschland GmbH
Pagina's96-113
Aantal pagina's18
ISBN van geprinte versie9783031770180
DOI's
StatusPublished - 22-nov.-2024
Evenement21st International Colloquium on Theoretical Aspects of Computing, ICTAC 2024 - Bangkok, Thailand
Duur: 25-nov.-202429-nov.-2024

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15373 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Conference

Conference21st International Colloquium on Theoretical Aspects of Computing, ICTAC 2024
Land/RegioThailand
StadBangkok
Periode25/11/202429/11/2024

Vingerafdruk

Duik in de onderzoeksthema's van 'Dual Adjunction Between Ω-Automata and Wilke Algebra Quotients'. Samen vormen ze een unieke vingerafdruk.

Citeer dit