Efficient relevance estimation and value calibration of evolutionary algorithm parameters

Volker Nannen, Agoston E. Eiben

OnderzoeksoutputAcademicpeer review

62 Citaten (Scopus)

Samenvatting

Calibrating the parameters of an evolutionary algorithm (EA) is a laborious task. The highly stochastic nature of an EA typically leads to a high variance of the measurements. The standard statistical method to reduce variance is measurement replication, i.e., averaging over several test runs with identical parameter settings. The computational cost of measurement replication scales with the variance and is often too high to allow for results of statistical significance. In this paper we study an alternative: the REVAC method for Relevance Estimation and Value Calibration, and we investigate how different levels of measurement replication influence the cost and quality of its calibration results. Two sets ofof experiments are reported: calibrating a genetic algorithm on standard benchmark problems, and calibrating a complex simulation in evolutionary agent-based economics. We find that measurement replication is not essential to REVAC, which emerges as a strong and efficient alternative to existing statistical methods.
Originele taal-2English
TitelIEEE Congress on Evolutionary Computation, CEC'07
UitgeverijIEEE
Pagina's103-110
Aantal pagina's8
ISBN van geprinte versie978-1-4244-1339-3
DOI's
StatusPublished - 2007
Extern gepubliceerdJa
Evenement2007 IEEE Congress on Evolutionary Computation, CEC 2007 - , Singapore
Duur: 25-sep.-200728-sep.-2007

Conference

Conference2007 IEEE Congress on Evolutionary Computation, CEC 2007
Land/RegioSingapore
Periode25/09/200728/09/2007

Vingerafdruk

Duik in de onderzoeksthema's van 'Efficient relevance estimation and value calibration of evolutionary algorithm parameters'. Samen vormen ze een unieke vingerafdruk.

Citeer dit