Embarrassingly Simple Unsupervised Aspect Extraction

Stéphan Tulkens, Andreas van Cranenburgh

    OnderzoeksoutputAcademicpeer review

    37 Citaten (Scopus)
    159 Downloads (Pure)

    Samenvatting

    We present a simple but effective method for aspect identification in sentiment analysis. Our unsupervised method only requires word embeddings and a POS tagger, and is therefore straightforward to apply to new domains and languages. We introduce Contrastive Attention (CAt), a novel single-head attention mechanism based on an RBF kernel, which gives a considerable boost in performance and makes the model interpretable. Previous work relied on syntactic features and complex neural models. We show that given the simplicity of current benchmark datasets for aspect extraction, such complex models are not needed. The code to reproduce the experiments reported in this paper is available at https://github.com/clips/cat.
    Originele taal-2English
    TitelProceedings of the 58th Annual Meeting of the Association for Computational Linguistics
    RedacteurenDan Jurafsky, Joyce Chai, Natalie Schluter, Joel Tetreault
    UitgeverijACL
    Pagina's3182-3187
    Aantal pagina's6
    StatusPublished - 2020
    Evenement58th Annual Meeting of the Association for Computational Linguistics -
    Duur: 5-jul.-202010-jul.-2020

    Conference

    Conference58th Annual Meeting of the Association for Computational Linguistics
    Periode05/07/202010/07/2020

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Embarrassingly Simple Unsupervised Aspect Extraction'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit