TY - JOUR
T1 - Enzymatic polymerization of furan-based polymers in biobased solvents
AU - Silvianti, Fitrilia
AU - Maniar, Dina
AU - de Leeuw, Tijn C.
AU - van Dijken, Jur
AU - Loos, Katja
N1 - Publisher Copyright:
© 2024 RSC.
PY - 2024/11/1
Y1 - 2024/11/1
N2 - The demand for biobased polymers is on the rise, driven by increasing environmental awareness and the imperative for sustainability. Biobased materials, which offer renewability, have emerged as a solution to the depletion of petroleum-based resources. Among biobased raw materials, 2,5-furandicarboxylic acid (2,5-FDCA) has gained prominence as an extensively studied monomer in the last decade. Polyesters based on 2,5-FDCA have shown compatibility and potential as biobased alternatives to polyethylene terephthalate (PET) for packaging applications. Besides FDCA, 2,5-bis(hydroxymethyl)furan (2,5-BHMF), a furan hetero-aromatic diol derivable from carbohydrates, has been identified as a versatile building block, presenting interesting properties for polymeric materials. In adherence to sustainability principles, the choice of catalyst for biobased polymer production is crucial. Biocatalysts, such as enzymes, not only provide renewability but also offer advantages such as mild reaction conditions, aligning with sustainable practices. However, many enzymatic polymerizations are reported in organic solvents, that are not environmentally friendly and/or non-renewable. To address this issue, this study explored the use of biobased solvents—namely, p-cymene, pinacolone, and d-limonene—for the enzymatic polymerization of dimethyl 2,5-furan dicarboxylate (2,5-FDCA-based) polyesters and copolyesters with 2,5-BHMF. By employing Candida antarctica lipase B (CALB), the enzymatic polymerization of this enzyme, particularly with p-cymene, has demonstrated high performance, resulting in high-molecular-weight polyester and copolyester products up to 7000 and 12 800 g mol−1, respectively. This study examined the thermal properties and crystallinity of the obtained products by analyzing their structure-property relationships. This research contributes to the advancement of sustainable polymer synthesis by considering biobased raw materials, environmentally friendly catalysts, and biobased solvents.
AB - The demand for biobased polymers is on the rise, driven by increasing environmental awareness and the imperative for sustainability. Biobased materials, which offer renewability, have emerged as a solution to the depletion of petroleum-based resources. Among biobased raw materials, 2,5-furandicarboxylic acid (2,5-FDCA) has gained prominence as an extensively studied monomer in the last decade. Polyesters based on 2,5-FDCA have shown compatibility and potential as biobased alternatives to polyethylene terephthalate (PET) for packaging applications. Besides FDCA, 2,5-bis(hydroxymethyl)furan (2,5-BHMF), a furan hetero-aromatic diol derivable from carbohydrates, has been identified as a versatile building block, presenting interesting properties for polymeric materials. In adherence to sustainability principles, the choice of catalyst for biobased polymer production is crucial. Biocatalysts, such as enzymes, not only provide renewability but also offer advantages such as mild reaction conditions, aligning with sustainable practices. However, many enzymatic polymerizations are reported in organic solvents, that are not environmentally friendly and/or non-renewable. To address this issue, this study explored the use of biobased solvents—namely, p-cymene, pinacolone, and d-limonene—for the enzymatic polymerization of dimethyl 2,5-furan dicarboxylate (2,5-FDCA-based) polyesters and copolyesters with 2,5-BHMF. By employing Candida antarctica lipase B (CALB), the enzymatic polymerization of this enzyme, particularly with p-cymene, has demonstrated high performance, resulting in high-molecular-weight polyester and copolyester products up to 7000 and 12 800 g mol−1, respectively. This study examined the thermal properties and crystallinity of the obtained products by analyzing their structure-property relationships. This research contributes to the advancement of sustainable polymer synthesis by considering biobased raw materials, environmentally friendly catalysts, and biobased solvents.
UR - http://www.scopus.com/inward/record.url?scp=85205433328&partnerID=8YFLogxK
U2 - 10.1039/d4su00358f
DO - 10.1039/d4su00358f
M3 - Article
AN - SCOPUS:85205433328
SN - 2753-8125
VL - 2
SP - 3436
EP - 3450
JO - RSC Sustainability
JF - RSC Sustainability
IS - 11
ER -