Ergodicity in Planar Slow-Fast Systems Through Slow Relation Functions

Renato Huzak*, Hildeberto Jardón-Kojakhmetov, Christian Kuehn

*Corresponding author voor dit werk

Onderzoeksoutput: ArticleAcademicpeer review

Samenvatting

In this paper, we study ergodic properties of the slow relation function (or entry-exit function) in planar slow-fast systems. It is well known that zeros of the slow divergence integral associated with canard limit periodic sets give candidates for limit cycles. We present a new approach to detect the zeros of the slow divergence integral by studying the structure of the set of all probability measures invariant under the corresponding slow relation function. Using the slow relation function, we also show how to estimate (in terms of weak convergence) the transformation of families of probability measures that describe initial point distribution of canard orbits during the passage near a slow-fast Hopf point (or a more general turning point). We provide formulas to compute exit densities for given entry densities and the slow relation function. We apply our results to slow-fast Li\'enard equations.

Originele taal-2English
Pagina's (van-tot)317-345
Aantal pagina's29
TijdschriftSIAM Journal on Applied Dynamical Systems
Volume24
Nummer van het tijdschrift1
DOI's
StatusPublished - mrt.-2025

Vingerafdruk

Duik in de onderzoeksthema's van 'Ergodicity in Planar Slow-Fast Systems Through Slow Relation Functions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit