Euclidean skeletons of 3D data sets in linear time by the integer medial axis transform

OnderzoeksoutputAcademicpeer review

249 Downloads (Pure)

Samenvatting

A general algorithm for computing Euclidean skeletons of 3D data sets in linear time is presented. These skeletons are defined in terms of a new concept, called the integer medial axis (IMA) transform. The algorithm is based upon the computation of 3D feature transforms, using a modification of an algorithm for Euclidean distance transforms. The skeletonization algorithm has a time complexity which is linear in the amount of voxels, and can be easily parallelized. The relation of the IMA skeleton to the usual definition in terms of centers of maximal disks is discussed.

Originele taal-2English
TitelMATHEMATICAL MORPHOLOGY: 40 YEARS ON
RedacteurenC Ronse, L Najman, E Decenciere
Plaats van productieDORDRECHT
UitgeverijSpringer
Pagina's259-268
Aantal pagina's10
ISBN van geprinte versie1-4020-3442-3
StatusPublished - 2005
Evenement7th International Symposium on Mathematical Morphology - , France
Duur: 18-apr-200520-apr-2005

Publicatie series

NaamComputational Imaging and Vision
UitgeverijSPRINGER
Volume30

Other

Other7th International Symposium on Mathematical Morphology
LandFrance
Periode18/04/200520/04/2005

Citeer dit