TY - JOUR
T1 - Evaluation of a Wearable Non-Invasive Thermometer for Monitoring Ear Canal Temperature during Physically Demanding (Outdoor) Work
AU - Roossien, Charlotte Christina
AU - Hodselmans, Audy Paul
AU - Heus, Ronald
AU - Reneman, Michiel Felix
AU - Verkerke, Gijsbertus Jacob
PY - 2021
Y1 - 2021
N2 - Aimed at preventing heat strain, health problems, and absenteeism among workers with physically demanding occupations, a continuous, accurate, non-invasive measuring system may help such workers monitor their body (core) temperature. The aim of this study is to evaluate the accuracy and explore the usability of the wearable non-invasive Cosinuss° °Temp thermometer. Ear canal temperature was monitored in 49 workers in real-life working conditions. After individual correction, the results of the laboratory and field study revealed high correlations compared to ear canal infrared thermometry for hospital use. After performance of the real-life working tasks, this correlation was found to be moderate. It was also observed that the ambient environmental outdoor conditions and personal protective clothing influenced the accuracy and resulted in unrealistic ear canal temperature outliers. It was found that the Cosinuss° °Temp thermometer did not result in significant interference during work. Therefore, it was concluded that, without a correction factor, the Cosinuss° °Temp thermometer is inaccurate. Nevertheless, with a correction factor, the reliability of this wearable ear canal thermometer was confirmed at rest, but not in outdoor working conditions or while wearing a helmet or hearing protection equipment.
AB - Aimed at preventing heat strain, health problems, and absenteeism among workers with physically demanding occupations, a continuous, accurate, non-invasive measuring system may help such workers monitor their body (core) temperature. The aim of this study is to evaluate the accuracy and explore the usability of the wearable non-invasive Cosinuss° °Temp thermometer. Ear canal temperature was monitored in 49 workers in real-life working conditions. After individual correction, the results of the laboratory and field study revealed high correlations compared to ear canal infrared thermometry for hospital use. After performance of the real-life working tasks, this correlation was found to be moderate. It was also observed that the ambient environmental outdoor conditions and personal protective clothing influenced the accuracy and resulted in unrealistic ear canal temperature outliers. It was found that the Cosinuss° °Temp thermometer did not result in significant interference during work. Therefore, it was concluded that, without a correction factor, the Cosinuss° °Temp thermometer is inaccurate. Nevertheless, with a correction factor, the reliability of this wearable ear canal thermometer was confirmed at rest, but not in outdoor working conditions or while wearing a helmet or hearing protection equipment.
U2 - 10.3390/ijerph18094896
DO - 10.3390/ijerph18094896
M3 - Article
C2 - 34064464
SN - 1661-7827
VL - 18
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
IS - 9
M1 - 4896
ER -