Fall detection and recognition from egocentric visual data: A case study

Xueyi Wang*, Estefanía Talavera Martínez, Dimka Karastoyanova, George Azzopardi

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

7 Downloads (Pure)

Samenvatting

Falling is among the most damaging events for elderly people, which sometimes may end with significant injuries. Due to fear of falling, many elderly people choose to stay more at home in order to feel safer. In this work, we propose a new fall detection and recognition approach, which analyses egocentric videos collected by wearable cameras through a computer vision/machine learning pipeline. More specifically, we conduct a case study with one volunteer who collected video data from two cameras; one attached to the chest and the other one attached to the waist. A total of 776 videos were collected describing four types of falls and nine kinds of non-falls. Our method works as follows: extracts several uniformly distributed frames from the videos, uses a pre-trained ConvNet model to describe each frame by a feature vector, followed by feature fusion and a classification model. Our proposed model demonstrates its suitability for the detection and recognition of falls from the data captured by the two cameras together. For this case study, we detect all falls with only one false positive, and reach a balanced accuracy of 93% in the recognition of the 13 types of activities. Similar results are obtained for videos of the two cameras when considered separately. Moreover, we observe better performance of videos collected in indoor scenes.

Originele taal-2English
TitelPattern Recognition. ICPR International Workshops and Challenges, 2021, Proceedings
RedacteurenAlberto Del Bimbo, Rita Cucchiara, Stan Sclaroff, Giovanni Maria Farinella, Tao Mei, Marco Bertini, Hugo Jair Escalante, Roberto Vezzani
UitgeverijSpringer Science and Business Media Deutschland GmbH
Pagina's431-443
Aantal pagina's13
ISBN van geprinte versie9783030687625
DOI's
StatusPublished - 2021
Evenement25th International Conference on Pattern Recognition Workshops, ICPR 2020 - Milan, Italy
Duur: 10-jan-202111-jan-2021

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12661 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Conference

Conference25th International Conference on Pattern Recognition Workshops, ICPR 2020
LandItaly
StadMilan
Periode10/01/202111/01/2021

Citeer dit