FC_RUG at CheckThat! 2024: Few-Shot Learning Using GEITje for Check-Worthiness Detection in Dutch

Sanne Weering, Tommaso Caselli*

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

34 Downloads (Pure)

Samenvatting

This contribution presents our approach for the CheckThat! 2024 Lab Task 1: Check-worthiness estimation. We focused on testing the abilities of GEITje, a large language model for Dutch based on Mistral-7B. We have experimented with different prompts varying the learning settings (zero-shot vs. few-shot) and the personas (helpful assistant vs. fact-checker). We selected our best model (helpful assistant with few-shot in-context learning) on the basis of the development data from the companion task of the CheckThat! 2022 Lab edition. We obtained a macro-F1 score of 0.657 and a F1-score on the positive class 0.594, ranking #6 out of 15 participants.

Originele taal-2English
TitelCLEF 2024 Working Notes
SubtitelWorking Notes of the Conference and Labs of the Evaluation Forum (CLEF 2024)
RedacteurenGuglielmo Faggioli, Nicola Ferro, Petra Galuscakova, Alba Garcia Seco de Herrera
UitgeverijCEUR Workshop Proceedings (CEUR-WS.org)
Pagina's672-679
Aantal pagina's8
StatusPublished - 2024
Evenement25th Working Notes of the Conference and Labs of the Evaluation Forum, CLEF 2024 - Grenoble, France
Duur: 9-sep.-202412-sep.-2024

Publicatie series

NaamCEUR Workshop Proceedings
Volume3740
ISSN van geprinte versie1613-0073

Conference

Conference25th Working Notes of the Conference and Labs of the Evaluation Forum, CLEF 2024
Land/RegioFrance
StadGrenoble
Periode09/09/202412/09/2024

Vingerafdruk

Duik in de onderzoeksthema's van 'FC_RUG at CheckThat! 2024: Few-Shot Learning Using GEITje for Check-Worthiness Detection in Dutch'. Samen vormen ze een unieke vingerafdruk.

Citeer dit