Friedrichs and Kreĭn type extensions in terms of representing maps

S. Hassi, H.S.V. de Snoo*

*Corresponding author voor dit werk

Onderzoeksoutput: ArticleAcademicpeer review

46 Downloads (Pure)

Samenvatting

A semibounded operator or relation S in a Hilbert space with lower bound γ∈R has a symmetric extension Sf=S+^({0}×mulS), the weak Friedrichs extension of S, and a selfadjoint extension SF, the Friedrichs extension of S, that satisfy S⊂Sf⊂SF. The Friedrichs extension SF has lower bound γ and it is the largest semibounded selfadjoint extension of S. Likewise, for each c≤γ, the relation S has a weak Kreĭn type extension Sk,c=S+^(ker(S-c)×{0}) and Kreĭn type extension SK,c of S, that satisfy S⊂Sk,c⊂SK,c. The Kreĭn type extension SK,c has lower bound c and it is the smallest semibounded selfadjoint extension of S which is bounded below by c. In this paper these special extensions and, more generally, all extremal extensions of S are constructed via the semibounded sesquilinear form t(S) that is associated with S; the representing map for the form t(S)-c plays an essential role here.

Originele taal-2English
Artikelnummer78
Aantal pagina's35
TijdschriftAnnals of Functional Analysis
Volume15
Nummer van het tijdschrift4
DOI's
StatusPublished - okt.-2024

Vingerafdruk

Duik in de onderzoeksthema's van 'Friedrichs and Kreĭn type extensions in terms of representing maps'. Samen vormen ze een unieke vingerafdruk.

Citeer dit