TY - JOUR
T1 - Friend or foe
T2 - Risso’s dolphins eavesdrop on conspecific sounds to induce or avoid intra-specific interaction
AU - Barluet de beauchesne, Lucie
AU - Massenet, Mathilde
AU - Oudejans, Machiel G.
AU - Kok, Annebelle C. M.
AU - Visser, Fleur
AU - Curé, Charlotte
PY - 2022/4/1
Y1 - 2022/4/1
N2 - The detection and use of emitters’ signals by unintended receivers, i.e., eavesdropping, represents an important and often low-cost way for animals to gather information from their environment. Acoustic eavesdropping can be a key driver in mediating intra- and interspecific interactions (e.g., cooperation, predator–prey systems), specifically in species such as cetaceans that use sound as a primary sensory modality. While most cetacean species produce context-specific sounds, little is known about the use of those sounds by potential conspecific eavesdroppers. We experimentally tested the hypothesis that a social cetacean, Risso’s dolphin (Grampus griseus), is able to gather biologically relevant information by eavesdropping on conspecific sounds. We conducted playback experiments on free-ranging dolphins using three context-specific sounds stimuli and monitored their horizontal movement using visual or airborne focal follow observations. We broadcasted natural sequences of conspecific foraging sounds potentially providing an attractive dinner bell signal (n = 7), male social sounds simulating a risk of forthcoming agonistic interaction (n = 7) and female-calf social sounds representing no particularly threatening context (n = 7). We developed a quantitative movement response score and tested whether animals changed their direction of horizontal movement towards or away from the playback source. Dolphins approached the foraging and the social female-calf sounds whereas they avoided the social male sounds. Hence, by acoustically eavesdropping on conspecifics, dolphins can discriminate between social and behavioural contexts and anticipate potential threatening or beneficial situations. Eavesdropping and the ensuing classification of ‘friend or foe’ can thus shape intra-specific social interactions in cetaceans.
AB - The detection and use of emitters’ signals by unintended receivers, i.e., eavesdropping, represents an important and often low-cost way for animals to gather information from their environment. Acoustic eavesdropping can be a key driver in mediating intra- and interspecific interactions (e.g., cooperation, predator–prey systems), specifically in species such as cetaceans that use sound as a primary sensory modality. While most cetacean species produce context-specific sounds, little is known about the use of those sounds by potential conspecific eavesdroppers. We experimentally tested the hypothesis that a social cetacean, Risso’s dolphin (Grampus griseus), is able to gather biologically relevant information by eavesdropping on conspecific sounds. We conducted playback experiments on free-ranging dolphins using three context-specific sounds stimuli and monitored their horizontal movement using visual or airborne focal follow observations. We broadcasted natural sequences of conspecific foraging sounds potentially providing an attractive dinner bell signal (n = 7), male social sounds simulating a risk of forthcoming agonistic interaction (n = 7) and female-calf social sounds representing no particularly threatening context (n = 7). We developed a quantitative movement response score and tested whether animals changed their direction of horizontal movement towards or away from the playback source. Dolphins approached the foraging and the social female-calf sounds whereas they avoided the social male sounds. Hence, by acoustically eavesdropping on conspecifics, dolphins can discriminate between social and behavioural contexts and anticipate potential threatening or beneficial situations. Eavesdropping and the ensuing classification of ‘friend or foe’ can thus shape intra-specific social interactions in cetaceans.
U2 - 10.1007/s10071-021-01535-y
DO - 10.1007/s10071-021-01535-y
M3 - Article
SN - 1435-9448
VL - 25
SP - 287
EP - 296
JO - Animal Cognition
JF - Animal Cognition
IS - 2
ER -