From data to reduced-order models via moment matching

Azka M. Burohman, Bart Besselink, Jacquelien M. A. Scherpen, M. Kanat Camlibel*

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

Samenvatting

A new method for data-driven interpolatory model reduction for discrete-time systems is presented in this paper. Using the so-called data informativity perspective, we define a framework that enables the computation of moments at given (possibly complex) interpolation points based on time-domain input–output data only, without explicitly identifying the high-order system. Instead, by characterizing the set of all systems explaining the data, necessary and sufficient conditions are provided under which all systems in this set share the same moment at a given interpolation point. Moreover, these conditions allow for explicitly computing these moments. Reduced-order models are then derived by employing a variation of the classical rational interpolation method. The condition to enforce moment matching model reduction with prescribed poles is also discussed as a means to obtain stable reduced-order models. An example of an electrical circuit illustrates this framework.

Originele taal-2English
Artikelnummer105965
Aantal pagina's9
TijdschriftSystems and Control Letters
Volume194
DOI's
StatusPublished - dec.-2024

Vingerafdruk

Duik in de onderzoeksthema's van 'From data to reduced-order models via moment matching'. Samen vormen ze een unieke vingerafdruk.

Citeer dit