Fully phased human genome assembly without parental data using single-cell strand sequencing and long reads

Human Genome Structural Variation Consortium

    OnderzoeksoutputAcademicpeer review

    17 Citaten (Scopus)
    16 Downloads (Pure)


    Human genomes are typically assembled as consensus sequences that lack information on parental haplotypes. Here we describe a reference-free workflow for diploid de novo genome assembly that combines the chromosome-wide phasing and scaffolding capabilities of single-cell strand sequencing1,2 with continuous long-read or high-fidelity3 sequencing data. Employing this strategy, we produced a completely phased de novo genome assembly for each haplotype of an individual of Puerto Rican descent (HG00733) in the absence of parental data. The assemblies are accurate (quality value > 40) and highly contiguous (contig N50 > 23 Mbp) with low switch error rates (0.17%), providing fully phased single-nucleotide variants, indels and structural variants. A comparison of Oxford Nanopore Technologies and Pacific Biosciences phased assemblies identified 154 regions that are preferential sites of contig breaks, irrespective of sequencing technology or phasing algorithms.

    Originele taal-2English
    Aantal pagina's13
    TijdschriftNature Biotechnology
    StatusE-pub ahead of print - 7-dec-2020

    Citeer dit