Gene co-expression analysis for functional classification and gene-disease predictions

Sipko van Dam, Urmo Võsa, Adriaan van der Graaf, Lude Franke, João Pedro de Magalhães

OnderzoeksoutputAcademicpeer review

640 Citaten (Scopus)
820 Downloads (Pure)

Samenvatting

Gene co-expression networks can be used to associate genes of unknown function with biological processes, to prioritize candidate disease genes or to discern transcriptional regulatory programmes. With recent advances in transcriptomics and next-generation sequencing, co-expression networks constructed from RNA sequencing data also enable the inference of functions and disease associations for non-coding genes and splice variants. Although gene co-expression networks typically do not provide information about causality, emerging methods for differential co-expression analysis are enabling the identification of regulatory genes underlying various phenotypes. Here, we introduce and guide researchers through a (differential) co-expression analysis. We provide an overview of methods and tools used to create and analyse co-expression networks constructed from gene expression data, and we explain how these can be used to identify genes with a regulatory role in disease. Furthermore, we discuss the integration of other data types with co-expression networks and offer future perspectives of co-expression analysis.

Originele taal-2English
Pagina's (van-tot)575-592
Aantal pagina's18
TijdschriftBriefings in Bioinformatics
Volume19
Nummer van het tijdschrift4
Vroegere onlinedatum10-jan.-2017
DOI's
StatusPublished - jul.-2018

Vingerafdruk

Duik in de onderzoeksthema's van 'Gene co-expression analysis for functional classification and gene-disease predictions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit