Geometry of KAM tori for nearly integrable Hamiltonian systems

Hendrik Broer, Richard Cushman, Francesco Fassò, Floris Takens

    OnderzoeksoutputAcademicpeer review

    24 Citaten (Scopus)
    363 Downloads (Pure)

    Samenvatting

    We obtain a global version of the Hamiltonian KAM theorem for invariant Lagrangian tori by gluing together local KAM conjugacies with the help of a partition of unity. In this way we find a global Whitney smooth conjugacy between a nearly integrable system and an integrable one. This leads to the preservation of geometry, which allows us to define all non-trivial geometric invariants of an integrable Hamiltonian system (like monodromy) for a nearly integrable one.

    Originele taal-2English
    Pagina's (van-tot)725-741
    Aantal pagina's17
    TijdschriftErgodic Theory and Dynamical Systems
    Volume27
    DOI's
    StatusPublished - jun.-2007

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Geometry of KAM tori for nearly integrable Hamiltonian systems'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit