Glucocorticoid receptor expression in blood, but not across brain regions, reveals long-term effects of early life adversity in zebra finches

OnderzoeksoutputAcademicpeer review

1 Citaat (Scopus)
5 Downloads (Pure)

Samenvatting

Early-life environment can affect organisms for life on many levels. The glucocorticoid receptor (GR) gene has a pivotal role mediating organismal physiological and behavioral responses to environmental change, and is sensitive to early-life environmental conditions and epigenetic programming. Longitudinal studies require non-lethal sampling of peripheral tissues (e.g. blood), but this approach is dependent on the extent to which GR expression in peripheral tissues covaries with GR expression in central tissues. To test for the long-term effects of early life adversity on GR expression across brain and peripheral tissues, we manipulated developmental conditions of captive zebra finches (n=45), rearing them in either benign or harsh conditions through manipulation of parental foraging costs. We measured relative GR mRNA expression in blood and five brain regions in adulthood: hippocampus, hypothalamus, amygdala, ventral striatum, and the nidopallium caudolaterale (analogous to the mammalian prefrontal cortex), using qPCR. We further tested whether GR expression was modulated by natal brood size (which affected growth), age at sampling, and sex. GR expression correlations between tissues varied widely in magnitude and direction, ranging from -0.27 to +0.80, indicating that our understanding of developmental effects on GR expression and associated phenotypes needs to be region specific rather than organism wide. A more consistent pattern was that GR expression increased with age in blood, ventral striatum and hippocampus; GR expression was independent of age in other tissues. Developmental treatment did not affect GR expression in any of the tissues measured directly, but in blood and ventral striatum of adult females we found a positive correlation between nestling mass and GR expression. Thus, GR expression in blood reflected early life conditions as reflected in growth in adult females, showing patterns in one brain tissue, but not ubiquitous across brain regions. These results point at sex-dependent physiological constraints during development, shaping early life effects on GR expression in females only. Further study is required to investigate whether these tissue-dependent effects more generally reflect tissue-dependent long-term effects of early life adversity. This, together with investigating the physiological consequences of GR expression levels on individual performance and coping abilities, will be fundamental towards understanding the mechanisms mediating long-term impacts of early life, and the extent to which these can be quantified through non-lethal sampling.

Originele taal-2English
Artikelnummer114310
Aantal pagina's9
TijdschriftPhysiology & Behavior
Volume271
Vroegere onlinedatum3-aug.-2023
DOI's
StatusPublished - nov.-2023

Citeer dit