TY - JOUR
T1 - Identification of a magnesium-dependent NAD(P)(H)-binding domain in the nicotinoprotein methanol dehydrogenase from Bacillus methanolicus
AU - Hektor, HJ
AU - Kloosterman, H
AU - Dijkhuizen, L
PY - 2002/12/6
Y1 - 2002/12/6
N2 - The Bacillus methanolicus methanol dehydrogenase (MDH) is a decameric nicotinoprotein alcohol dehydrogenase (family III) with one Zn2+ ion, one or two Mg2+ ions, and a tightly bound cofactor NAD(H) per subunit. The Mg2+ ions are essential for binding of cofactor NAD(H) in MDH. A B. methanolicus activator protein strongly stimulates the relatively low coenzyme NAD(+)-dependent MDH activity, involving hydrolytic removal of the NMN(H) moiety of cofactor NAD(H) (Kloosterman, H., Vrijbloed, J. W., and Dijkhuizen, L. (2002) J. Biol. Chem. 277, 34785-34792). Members of family III of NAD(P)-dependent alcohol dehydrogenases contain three unique, conserved sequence motifs (domains A, B, and C). Domain C is thought to be involved in metal binding, whereas the functions of domains A and B are still unknown. This paper provides evidence that domain A constitutes (part of) a new magnesium-dependent NAD(P)(H)-binding domain. Site-directed mutants D100N and K103R lacked (most of the) bound cofactor NAD(H) and had lost all coenzyme NAD(+)-dependent MDH activity. Also mutants G95A and S97G were both impaired in cofactor NAD(H) binding but retained coenzyme NAD(+)-dependent MDH activity. Mutant G95A displayed a rather low MDH activity, whereas mutant S97G was insensitive to activator protein but displayed "fully activated" MDH reaction rates. The various roles of these amino acid residues in coenzyme and/or cofactor NAD(H) binding in MDH are discussed.
AB - The Bacillus methanolicus methanol dehydrogenase (MDH) is a decameric nicotinoprotein alcohol dehydrogenase (family III) with one Zn2+ ion, one or two Mg2+ ions, and a tightly bound cofactor NAD(H) per subunit. The Mg2+ ions are essential for binding of cofactor NAD(H) in MDH. A B. methanolicus activator protein strongly stimulates the relatively low coenzyme NAD(+)-dependent MDH activity, involving hydrolytic removal of the NMN(H) moiety of cofactor NAD(H) (Kloosterman, H., Vrijbloed, J. W., and Dijkhuizen, L. (2002) J. Biol. Chem. 277, 34785-34792). Members of family III of NAD(P)-dependent alcohol dehydrogenases contain three unique, conserved sequence motifs (domains A, B, and C). Domain C is thought to be involved in metal binding, whereas the functions of domains A and B are still unknown. This paper provides evidence that domain A constitutes (part of) a new magnesium-dependent NAD(P)(H)-binding domain. Site-directed mutants D100N and K103R lacked (most of the) bound cofactor NAD(H) and had lost all coenzyme NAD(+)-dependent MDH activity. Also mutants G95A and S97G were both impaired in cofactor NAD(H) binding but retained coenzyme NAD(+)-dependent MDH activity. Mutant G95A displayed a rather low MDH activity, whereas mutant S97G was insensitive to activator protein but displayed "fully activated" MDH reaction rates. The various roles of these amino acid residues in coenzyme and/or cofactor NAD(H) binding in MDH are discussed.
KW - GLUCOSE-FRUCTOSE OXIDOREDUCTASE
KW - ELECTRON-MICROSCOPIC ANALYSIS
KW - ALCOHOL-DEHYDROGENASE
KW - ZYMOMONAS-MOBILIS
KW - SEQUENCE-ANALYSIS
KW - ESCHERICHIA-COLI
KW - CLOSTRIDIUM-ACETOBUTYLICUM
KW - MOLECULAR CHARACTERIZATION
KW - GENE-CLUSTER
KW - THERMOTOLERANT BACILLUS
U2 - 10.1074/jbc.M207547200
DO - 10.1074/jbc.M207547200
M3 - Article
VL - 277
SP - 46966
EP - 46973
JO - The Journal of Biological Chemistry
JF - The Journal of Biological Chemistry
SN - 0021-9258
IS - 49
ER -