TY - JOUR
T1 - In Vitro Susceptibility of Mycobacterium tuberculosis to Amikacin, Kanamycin, and Capreomycin
AU - Dijkstra, J. A.
AU - van der Laan, T.
AU - Akkerman, O. W.
AU - Bolhuis, M. S.
AU - de lange, W. C. M.
AU - Kosterink, J. G. W.
AU - van der Werf, T. S.
AU - Alffenaar, J. W. C.
AU - van Soolingen, D.
N1 - Copyright © 2018 American Society for Microbiology.
PY - 2018/3
Y1 - 2018/3
N2 - Amikacin, kanamycin, and capreomycin are among the most important second-line drugs for multidrug-resistant tuberculosis. Although amikacin and kanamycin are administered at the same dose and show the same pharmacokinetics, they have different WHO breakpoints, suggesting that the two drugs have different MICs. The aim of this study was to investigate possible differences in MICs between the aminoglycosides and capreomycin. Using the direct concentration method, a range of concentrations of amikacin, kanamycin, and capreomycin (0.25, 0.50, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, and 64.0 mg/liter) were tested against 57 clinical Mycobacterium tuberculosis strains. The 7H10 agar plates were examined for mycobacterial growth after 14 days. At 2 mg/liter, 48 strains (84%) were inhibited by amikacin and only 5 strains (9%) were inhibited by kanamycin (P <0.05, Wilcoxon signed-rank test). The median MICs of amikacin, kanamycin, and capreomycin were 2, 4, and 8 mg/liter, respectively. No difference in amikacin, kanamycin, and capreomycin MIC distributions was observed between multidrug-resistant strains and fully susceptible strains. The results indicate that amikacin is more active than kanamycin and capreomycin against M. tuberculosis with the absolute concentration method. Determination of the impact of this difference on clinical outcomes in daily practice requires a prospective study, including pharmacokinetic and pharmacodynamic evaluations.
AB - Amikacin, kanamycin, and capreomycin are among the most important second-line drugs for multidrug-resistant tuberculosis. Although amikacin and kanamycin are administered at the same dose and show the same pharmacokinetics, they have different WHO breakpoints, suggesting that the two drugs have different MICs. The aim of this study was to investigate possible differences in MICs between the aminoglycosides and capreomycin. Using the direct concentration method, a range of concentrations of amikacin, kanamycin, and capreomycin (0.25, 0.50, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, and 64.0 mg/liter) were tested against 57 clinical Mycobacterium tuberculosis strains. The 7H10 agar plates were examined for mycobacterial growth after 14 days. At 2 mg/liter, 48 strains (84%) were inhibited by amikacin and only 5 strains (9%) were inhibited by kanamycin (P <0.05, Wilcoxon signed-rank test). The median MICs of amikacin, kanamycin, and capreomycin were 2, 4, and 8 mg/liter, respectively. No difference in amikacin, kanamycin, and capreomycin MIC distributions was observed between multidrug-resistant strains and fully susceptible strains. The results indicate that amikacin is more active than kanamycin and capreomycin against M. tuberculosis with the absolute concentration method. Determination of the impact of this difference on clinical outcomes in daily practice requires a prospective study, including pharmacokinetic and pharmacodynamic evaluations.
KW - Journal Article
U2 - 10.1128/AAC.01724-17
DO - 10.1128/AAC.01724-17
M3 - Article
C2 - 29311078
SN - 1098-6596
VL - 62
JO - Antimicrobial Agents and Chemotherapy
JF - Antimicrobial Agents and Chemotherapy
IS - 3
M1 - e01724-17
ER -