Inertial Krasnoselskii-Mann Iterations

Juan José Maulén, Ignacio Fierro, Juan Peypouquet*

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

2 Citaten (Scopus)
67 Downloads (Pure)

Samenvatting

We establish the weak convergence of inertial Krasnoselskii-Mann iterations towards a common fixed point of a family of quasi-nonexpansive operators, along with estimates for the non-asymptotic rate at which the residuals vanish. Strong and linear convergence are obtained in the quasi-contractive setting. In both cases, we highlight the relationship with the non-inertial case, and show that passing from one regime to the other is a continuous process in terms of the hypotheses on the parameters. Numerical illustrations are provided for an inertial primal-dual method and an inertial three-operator splitting algorithm, whose performance is superior to that of their non-inertial counterparts.

Originele taal-2English
Artikelnummer10
Aantal pagina's27
TijdschriftSet-Valued and Variational Analysis
Volume32
Nummer van het tijdschrift2
DOI's
StatusPublished - 26-mrt.-2024

Vingerafdruk

Duik in de onderzoeksthema's van 'Inertial Krasnoselskii-Mann Iterations'. Samen vormen ze een unieke vingerafdruk.

Citeer dit