Inflow of low-metallicity cool gas in the halo of the Andromeda galaxy

Andrea Afruni*, Gabriele Pezzulli, Filippo Fraternali

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

1 Citaat (Scopus)
1 Downloads (Pure)


As the closest L* galaxy to our own Milky Way, the Andromeda galaxy (M31) is an ideal laboratory for studies of galaxy evolution. The AMIGA project has recently provided observations of the cool (T ~ 104 K) phase of the circumgalactic medium (CGM) of M31, using HST/COS absorption spectra along ~40 background QSO sightlines, located up to and beyond the galaxy virial radius. Based on these data, and by the means of semi-analytic models and Bayesian inference, we provide here a physical description of the origin and dynamics of the cool CGM of M31. We investigate two competing scenarios, in which (i) the cool gas is mostly produced by supernova(SN)-driven galactic outflows or (ii) it mostly originates from infall of gas from the intergalactic medium. In both cases, we take into account the effect of gravity and hydrodynamical interactions with a hot corona, which has a cosmologically motivated angular momentum. We compare the outputs of our models to the observed covering factor, silicon column density and velocity distribution of the AMIGA absorbers. We find that, to explain the observations, the outflow scenario requires an unphysically large (> 100%) efficiency for SN feedback. Our infall models, on the other hand, can consistently account for the AMIGA observations and the predicted accretion rate, angular momentum and metallicity are consistent with a cosmological infall from the intergalactic medium.
Originele taal-2English
Pagina's (van-tot)4849-4864
Aantal pagina's16
TijdschriftMonthly Notices of the Royal Astronomical Society
Nummer van het tijdschrift4
StatusPublished - 1-feb.-2022

Citeer dit