Insight Into Individual Differences in Emotion Dynamics With Clustering

OnderzoeksoutputAcademicpeer review

14 Citaten (Scopus)
101 Downloads (Pure)

Samenvatting

Studying emotion dynamics through time series models is becoming increasingly popular in the social sciences. Across individuals, dynamics can be rather heterogeneous. To enable comparisons and generalizations of dynamics across groups of individuals, one needs sophisticated tools that express the essential similarities and differences. A way to proceed is to identify subgroups of people who are characterized by qualitatively similar emotion dynamics through dynamic clustering. So far, these methods assume equal generating processes for individuals per cluster. To avoid this overly restrictive assumption we outline a probabilistic clustering approach based on a mixture model that clusters on individuals’ vector autoregressive (VAR) coefficients. We evaluate the performance of the method and compare it to a non-probabilistic method in a simulation study. The usefulness of the methods is illustrated using 366 ecological momentary assessment time series with external measures of depression and anxiety.
Originele taal-2English
Pagina's (van-tot)1186-1206
Aantal pagina's21
TijdschriftAssessment
Volume28
Nummer van het tijdschrift4
Vroegere onlinedatum13-sep.-2019
DOI's
StatusPublished - sep.-2021

Vingerafdruk

Duik in de onderzoeksthema's van 'Insight Into Individual Differences in Emotion Dynamics With Clustering'. Samen vormen ze een unieke vingerafdruk.

Citeer dit