TY - JOUR
T1 - Integrative approaches to understanding organismal responses to aquatic deoxygenation
AU - Woods, H. Arthur
AU - Moran, Amy L.
AU - Atkinson, David
AU - Audzijonyte, Asta
AU - Berenbrink, Michael
AU - Borges, Francisco O.
AU - Burnett, Karen G.
AU - Burnett, Louis E.
AU - Coates, Christopher J.
AU - Collin, Rachel
AU - Costa-Paiva, Elisa M.
AU - Duncan, Murray I.
AU - Ern, Rasmus
AU - Laetz, Elise M.J.
AU - Levin, Lisa A.
AU - Lindmark, Max
AU - Lucey, Noelle M.
AU - McCormick, Lillian R.
AU - Pierson, James J.
AU - Rosa, Rui
AU - Roman, Michael R.
AU - Sampaio, Eduardo
AU - Schulte, Patricia M.
AU - Sperling, Erik A.
AU - Walczyńska, Aleksandra
AU - Verberk, Wilco C.E.P.
N1 - Funding Information:
Thanks to the editors and staff at The Biological Bul-letin for supporting this symposium volume and helping us to define the direction and scope of the work.
Publisher Copyright:
© 2022 The University of Chicago.
PY - 2022/10
Y1 - 2022/10
N2 - Oxygen bioavailability is declining in aquatic systems worldwide as a result of climate change and other anthropogenic stressors. For aquatic organisms, the consequences are poorly known but are likely to reflect both direct effects of declining oxygen bioavailability and interactions between oxygen and other stressors, including two—warming and acidification— that have received substantial attention in recent decades and that typically accompany oxygen changes. Drawing on the collected papers in this symposium volume (“An Oxygen Perspective on Climate Change”), we outline the causes and consequences of declining oxygen bioavailability. First, we discuss the scope of natural and predicted anthropogenic changes in aquatic oxygen levels. Although modern organisms are the result of long evolutionary histories during which they were exposed to natural oxygen regimes, anthropogenic change is now exposing them to more extreme conditions and novel combinations of low oxygen with other stressors. Second, we identify behavioral and physiological mechanisms that underlie the interactive effects of oxygen with other stressors, and we assess the range of potential organismal responses to oxygen limitation that occur across levels of biological organization and over multiple timescales. We argue that metabolism and energetics provide a powerful and unifying framework for understanding organism-oxygen interactions. Third, we conclude by out-lining a set of approaches for maximizing the effectiveness of future work, including focusing on long-term experiments using biologically realistic variation in experimental factors and taking truly cross-disciplinary and integrative approaches to understanding and predicting future effects.
AB - Oxygen bioavailability is declining in aquatic systems worldwide as a result of climate change and other anthropogenic stressors. For aquatic organisms, the consequences are poorly known but are likely to reflect both direct effects of declining oxygen bioavailability and interactions between oxygen and other stressors, including two—warming and acidification— that have received substantial attention in recent decades and that typically accompany oxygen changes. Drawing on the collected papers in this symposium volume (“An Oxygen Perspective on Climate Change”), we outline the causes and consequences of declining oxygen bioavailability. First, we discuss the scope of natural and predicted anthropogenic changes in aquatic oxygen levels. Although modern organisms are the result of long evolutionary histories during which they were exposed to natural oxygen regimes, anthropogenic change is now exposing them to more extreme conditions and novel combinations of low oxygen with other stressors. Second, we identify behavioral and physiological mechanisms that underlie the interactive effects of oxygen with other stressors, and we assess the range of potential organismal responses to oxygen limitation that occur across levels of biological organization and over multiple timescales. We argue that metabolism and energetics provide a powerful and unifying framework for understanding organism-oxygen interactions. Third, we conclude by out-lining a set of approaches for maximizing the effectiveness of future work, including focusing on long-term experiments using biologically realistic variation in experimental factors and taking truly cross-disciplinary and integrative approaches to understanding and predicting future effects.
UR - http://www.scopus.com/inward/record.url?scp=85144498645&partnerID=8YFLogxK
U2 - 10.1086/722899
DO - 10.1086/722899
M3 - Article
C2 - 36548975
AN - SCOPUS:85144498645
SN - 0006-3185
VL - 243
SP - 85
EP - 103
JO - Biological Bulletin
JF - Biological Bulletin
IS - 2
ER -