Knauf’s degree and monodromy in planar potential scattering

Nikolay Martynchuk*, Holger Waalkens

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

5 Citaten (Scopus)
52 Downloads (Pure)

Samenvatting

We consider Hamiltonian systems on (T*ℝ2, dq ∧ dp) defined by a Hamiltonian function H of the “classical” form H = p2/2 + V(q). A reasonable decay assumption V(q) → 0, ‖q‖ → ∞, allows one to compare a given distribution of initial conditions at t = −∞ with their final distribution at t = +∞. To describe this Knauf introduced a topological invariant deg(E), which, for a nontrapping energy E > 0, is given by the degree of the scattering map. For rotationally symmetric potentials V(q) = W(‖q‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg(E) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg(E), which appears when the nontrapping energy E goes from low to high values.

Originele taal-2English
Pagina's (van-tot)697-706
Aantal pagina's10
TijdschriftRegular & chaotic dynamics
Volume21
Nummer van het tijdschrift6
DOI's
StatusPublished - 1-nov.-2016

Vingerafdruk

Duik in de onderzoeksthema's van 'Knauf’s degree and monodromy in planar potential scattering'. Samen vormen ze een unieke vingerafdruk.

Citeer dit