Learning to Predict Novel Noun-Noun Compounds

Prajit Dhar, Lonneke van der Plas

    OnderzoeksoutputAcademicpeer review

    45 Downloads (Pure)

    Samenvatting

    We introduce temporally and contextually-aware models for the novel task of predicting unseen but plausible concepts, as conveyed by noun-noun compounds in a time-stamped corpus. We train compositional models on observed compounds, more specifically the composed distributed representations of their constituents across a time-stamped corpus, while giving it corrupted instances (where head or modifier are replaced by a random constituent) as negative evidence. The model captures generalisations over this data and learns what combinations give rise to plausible compounds and which ones do not. After training, we query the model for the plausibility of automatically generated novel combinations and verify whether the classifications are accurate. For our best model, we find that in around 85% of the cases, the novel compounds generated are attested in previously unseen data. An additional estimated 5% are plausible despite not being attested in the recent corpus, based on judgments from independent human raters.
    Originele taal-2English
    TitelJoint Workshop on Multiword Expressions and WordNet (MWE-WN 2019)
    SubtitelProceedings of the Joint Workshop on Multiword Expressions and WordNet (MWE-WN 2019)
    Plaats van productieFlorence, Italy
    UitgeverijAssociation for Computational Linguistics (ACL)
    Pagina's30-39
    Aantal pagina's10
    DOI's
    StatusPublished - aug-2019

    Citeer dit