Light-Triggered Disassembly of Molecular Motor-based Supramolecular Polymers Revealed by High Speed-AFM

Chris van Ewijk, Fan Xu, Sourav Maity, Jinyu Sheng, Marc C A Stuart, Ben L Feringa*, Wouter H Roos*

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

11 Downloads (Pure)


Photoresponsive supramolecular polymers have a major potential for applications in responsive materials that are externally triggered by light with spatio-temporal control of their polymerisation state. While changes in macroscopic properties revealed the adaptive nature of these materials, it remains challenging to capture the dynamic depolymerisation process at the molecular level, which requires fast observation techniques combined with in situ irradiation. By implementing in situ UV illumination into a High-Speed Atomic Force Microscope (HS-AFM) setup, we have been able to capture the disassembly of a light-driven molecular motor-based supramolecular polymer. The real-time visualisation of the light-triggered disassembly process not only reveals cooperative depolymerisation, it also shows that this process continues after illumination is halted. Combining the data with cryo-electron microscopy and spectroscopy approaches, we obtain a molecular-level description of the motor-based polymer dynamics reminiscent of actin chain-end depolymerisation. Our detailed understanding of supramolecular depolymerisation will drive the development of future responsive polymer systems.

Originele taal-2English
Aantal pagina's7
TijdschriftAngewandte Chemie (International ed. in English)
Nummer van het tijdschrift14
Vroegere onlinedatum4-mrt.-2024
StatusPublished - 2-apr.-2024

Citeer dit