Limit sets within curves where trajectories converge to

Pouria Ramazi*, Hildeberto Jardón Kojakhmetov, Ming Cao

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

5 Citaten (Scopus)
83 Downloads (Pure)

Samenvatting

For continuously differentiable vector fields, we characterize the omega limit set of a trajectory converging to a compact curve Gamma subset of R-n. In particular, the limit set is either a fixed point or a continuum of fixed points if Gamma is a simple open curve; otherwise, the limit set can in addition be either a closed orbit or a number of fixed points with compatibly oriented orbits connecting them. An implication of the result is a tightened-up version of the Poincare-Bendixson theorem. (C) 2017 Elsevier Ltd. All rights reserved.

Originele taal-2English
Pagina's (van-tot)94-100
Aantal pagina's7
TijdschriftApplied Mathematics Letters
Volume68
DOI's
StatusPublished - jun.-2017

Vingerafdruk

Duik in de onderzoeksthema's van 'Limit sets within curves where trajectories converge to'. Samen vormen ze een unieke vingerafdruk.

Citeer dit