Limit theory of sparse random geometric graphs in high dimensions

Gilles Bonnet, Christian Hirsch, Daniel Rosen, Daniel Willhalm*

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

68 Downloads (Pure)

Samenvatting

We study topological and geometric functionals of l-random geometric graphs on the high-dimensional torus in a sparse regime, where the expected number of neighbors decays exponentially in the dimension. More precisely, we establish moment asymptotics, functional central limit theorems and Poisson approximation theorems for certain functionals that are additive under disjoint unions of graphs. For instance, this includes simplex counts and Betti numbers of the Rips complex, as well as general subgraph counts of the random geometric graph. We also present multi-additive extensions that cover the case of persistent Betti numbers of the Rips complex.

Originele taal-2English
Pagina's (van-tot)203-236
Aantal pagina's34
TijdschriftStochastic processes and their applications
Volume163
DOI's
StatusPublished - sep.-2023

Vingerafdruk

Duik in de onderzoeksthema's van 'Limit theory of sparse random geometric graphs in high dimensions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit