Limiting probabilities of first order properties of random sparse graphs and hypergraphs

Alberto Larrauri, Tobias Müller, Marc Noy*

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

2 Citaten (Scopus)
83 Downloads (Pure)

Samenvatting

Let (Formula presented.) be the binomial random graph (Formula presented.) in the sparse regime, which as is well-known undergoes a phase transition at (Formula presented.). Lynch ((Formula presented.), 1992) showed that for every first order sentence (Formula presented.), the limiting probability that (Formula presented.) satisfies (Formula presented.) as (Formula presented.) exists, and moreover it is an analytic function of c. In this paper we consider the closure (Formula presented.) in the interval (Formula presented.) of the set (Formula presented.) of all limiting probabilities of first order sentences in (Formula presented.). We show that there exists a critical value (Formula presented.) such that (Formula presented.) when (Formula presented.), whereas (Formula presented.) misses at least one subinterval when (Formula presented.). We extend these results to random sparse d-uniform hypergraphs, where the probability of a d-edge is (Formula presented.).

Originele taal-2English
Pagina's (van-tot)506-526
Aantal pagina's21
TijdschriftRandom Structures and Algorithms
Volume60
Nummer van het tijdschrift3
Vroegere onlinedatum18-aug.-2021
DOI's
StatusPublished - mei-2022

Vingerafdruk

Duik in de onderzoeksthema's van 'Limiting probabilities of first order properties of random sparse graphs and hypergraphs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit